ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

(21), (22) Заявка: 5055759/09, 22.07.1992
(46) Дата публикации: 20.02.1996
(71) Заявитель: Слюсар Б.И.
(72) Изобретатель: Слюсар Б.И.
(73) Патентообладатель: Дадочкин Сергей Васильевич

(54) СПОСОБ ИЗМЕРЕНИЯ АМПЛИТУДНО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК

(57) Реферат:
Использование: в информационно-вычислительной технике для оперативного исследования амплитудно-частотных характеристик (АЧХ) различных устройств. Сущность изобретения: способ измерения АЧХ заключается в том, что на испытуемый объект воздействуют одновременно набором колебаний из M заданных частот, полученные в 2S (2S больше или равно М) моментах времени цифровые отсчеты откликов объекта подвергают операции S-точечного быстрого преобразования Фурье (БПФ) и затем по уровням спектральных составляющих определяют модули выходных сигналов на каждой из заданных частот, различия в номиналах которых могут быть меньше ширины характеристики синтезированного БПФ-филтра. З е. п. ф-лы, 1 ил.
RU 2 054 684 C1

RUSSIAN AGENCY
FOR PATENTS AND TRADEMARKS

ABSTRACT OF INVENTION

(21), (22) Application: 5055759/09, 22.07.1992
(46) Date of publication: 20.02.1996

(71) Applicant:
Slijser V.I.

(72) Inventor:
Slijser V.I.

(73) Proprietor:
Dadochkin Sergej Vasil'evich

(54) AMPLITUDE-FREQUENCY RESPONSE MEASUREMENT TECHNIQUE

(57) Abstract:
FIELD: computer engineering. SUBSTANCE: amplitude-frequency response measurement involves subjecting entity under test to effect of set of oscillations of M preset frequencies, subjecting digital readings of entity responses obtained at 2·S (2·S is higher than or equal to M) time intervals to fast S-dot Fourier transform, followed by determining output signal modules at each of preset frequencies by level of spectral components; ratings may differ by less than width of synthesized fast Fourier transform filter characteristics. EFFECT: facilitated procedure. 4 cl, 1 dwg
Изобретение относится к информационно-вычислительной технике и может быть использовано для оперативного контроля или экспериментального исследования амплитудно-частотных характеристик (АЧХ) конструций, приборов и устройств, в спектрометрии.

Суть всех известных способов измерения АЧХ, (например, по авт. св. Н 1268522, 1215046, 1307373 и др.) заключается в том, что на вход испытуемого объекта последовательно подают гармонические сигналы различных частот из заданного набора, фиксируя отклики объекта на каждой из них.

Известные способы позволяют производить замеры АЧХ. Однако они сопровождаются заметными потерями времени на последовательный переход от одной частоты к другой, связанными с необходимостью управления генераторами перестраиваемой частоты, неизбежными к тому же наличием в них переходных процессов, которые вносят дополнительные погрешности. Кроме того, подобного рода тестирование является в ряде случаев в целом неприменимым. К числу таких следует отнести контроль АЧХ устройств, оснащенных автоматической регулировкой усиления (АРУ), наличие которой нивелирует различия в значениях АЧХ на разных частотах при времени перехода от одной частоты к другой, большим постоянной срабатывания АРУ.

Поэтому исследование АЧХ указанных объектов известными способами без отключения АРУ невозможно. Существующие подходы за счет искажений затуханий во времени процесса измерения приводят к росту погрешностей, особенно для радиоэлектронных узлов, так как их параметры нестабильны во времени. Кроме того, возрастает вероятность случайных воздействий.

Наиболее близким по технической сущности к изобретению является способ измерения АЧХ, заполненный в основу устройства по авт. св. Н 1500375, включающий последовательное воздействие на испытуемый объект М колебаниями заданных частот и аналого-цифровое преобразование его отклика на входные воздействия в М последовательных моментах времени.

Способ прототип характеризуется теми же недостатками, что и аналоги.

Сущность изобретения заключается в том, что на испытуемый объект воздействуют одновременно всем набором колебаний из М заданных частот, аналогово-цифровое преобразование откликов испытуемого объекта выполняют с периодом дискретизации, кратным целому числу четвертей периода центрального для подаваемого пакета частот колебания, полученные в С(2·S·M) последовательных моментах времени 2·S откликов объекта на суммарное входное воздействие далее подвергают операции S-точечного БПФ (быстрое преобразование Фурье), сформировав предварительно из исходных 2·S отсчетов сигнала S комплексных симплексных напряженности путем разделения последовательности цифровых отсчетов на четные и нечетные по номеру следования выборки с последующим использованием их в качестве квадратур, и затем по уровням спектральных составляющих определяют модули выходных сигналов испытуемого объекта на каждой из заданных частот в соответствии с выражением

\[|A| = \sqrt{A_m^2 + A_a^2} \]

где

\[A_m = \frac{1}{M} \sum_{k=1}^{M} a_k \]

\[A_a = \frac{1}{M} \sum_{k=1}^{M} a_k \]

где \(a_k \) - отклики от одного и того же частотного вектора свободных членов \(B_{(k)} \)

\[B_{(k)} = S^{-1} U_j \chi_j(W_1) \]

где \(U_j \) - ядерные составляющие комплексного значения отклика j-го БПФ-фильтра

\[f = \frac{\sin\left(\frac{\pi}{2} - \frac{\pi}{2N}
ight)}{\sin\left(\frac{\pi}{2N} - \frac{\pi}{2N}
ight)} \cdot \frac{\sin\left(\frac{\pi}{2} - \frac{\pi}{2N}
ight)}{\sin\left(\frac{\pi}{2N} - \frac{\pi}{2N}
ight)} \]

значение характеристики, синтезированных в результате БПФ частотных фильтров

\[W_1, W_2, W_3 \] - частоты из множества заданных, выраженные в долях ширины характеристики БПФ-фильтра.

Существенное отличие заявляемого способа заключается в том, что частоты входных воздействий в суммарном пакете могут быть равномерны на расстояние по частоте, меньшее решетчатого предела разрешения (ширины синтезированного БПФ-фильтра). Другими словами, предлагаемый способ работает способен в ситуациях, соответствующих сверхрешетчатому разрешению, сигналы по частоте.

Что касается точности измерения АЧХ, то в рамках заявляемого способа она определяется отношением сигнала/шум, а также разносом частот входных воздействий.

Для упрощения операций способа параметры БПФ (общее число точек и интервал между отсчетами во времени) можно выбрать такими, чтобы в итоге все или часть из заданных частот были "резонансными" для синтезируемых посредством БПФ частотных фильтров. Применительно к таким резонансным частотам амплитуда определяют нормированной уровней соответствующих спектральных составляющих к количеству...
точек БПФ. Что касается анализа остальных частот, не совпадших с максимумами частотных характеристик синтезированных БПФ-фильтров, то он должен проводиться в рамках рассмотренной выше процедуры.

10. Для исключения влияния нестабильностей амплитуд входных воздействий на достоверность измерений, а также учета возможных различий в уровнях сигналов разных генераторов целесообразно сопровождать обработку откликов тестирования блока измерений модулей амплитуд входных воздействий по эталонному каналу приема, не обладающего частотной искажаемостью. В качестве такового можно использовать обычный аналого-цифровой преобразователь (АЦП), сигналы на вход которого подают, минуя тестируемый объект, причем оценивается амплитуда сигналов на отклонение эталонного значения также должно проводиться согласно выражению (1). В последующем полученные по эталонному каналу результаты должны быть использованы для нормировки оценок амплитуд откликов испытуемого объекта.

В качестве примера практической реализации данного подхода можно указать вариант измерительного стенда для исследования АЧХ радиоэлектронных устройств, функциональная схема которого приведена на чертеже, где 1 АЦП, 2 буферное ОЗУ со схемами управления, 3 аттенюатор, 4 усилитель промежуточной частоты, АЧХ которого требовалось исследовать, 5 формирователь тактовых импульсов, 6 сумматор, 7 переключатель частоты, 8 синтезатор частоты ЧМ-31, 9 частотомер ЧМ-38.

В качестве основного элемента стенда следует рассматривать ПОЭМ типа IBM, выполняющую одновременно функции управления и обработки вычислителя. Она обеспечивает дистанционное управление работой синтезаторов частоты, реализацию алгоритмов цифровой обработки сигналов, статистической анализа результатов эксперимента, а также их документирование.

Исходным звеном в цепи формирования входных воздействий являются синтезаторы частоты типа ЧМ-38, обеспечивающие генерацию непрерывных гармонических сигналов требуемого набора частот. Одним из их использований в качестве генератора тактовой частоты для аналого-цифрового преобразователя и диапазона частот буферного ОЗУ. В принципе при соответствующей доработке формирование требуемого пакета из М частот может быть осуществлено одним синтезатором частоты вложением М, предусмотренных в описываемом варианте стенда. Техническое решение синтезаторов частоты аналогичных ЧМ-31, позволяя делать это без особых трудов. Однако более предпочтительной являлась бы специальная промышленная разработка синтезаторов многочастотных пакетов, позволяющих одновременно генерировать произвольное число гармонических сигналов одинаковой амплитуды (это устранило бы необходимость проведения операции нормировки откликов испытуемого объекта к амплитудам эталонного канала), задавать требуемую расстановку частот в пакете, гибко формировать поддиапазоны с дистанционным их переключением.

Формирователь тактовых импульсов преобразует непрерывный гармонический сигнал на выходе генератора тактов ЧМ-31 в импульсную последовательность типа "мешоч" ЭСЛ-уровня. Сумматор обеспечивает сложение М входных воздействий для канализации их по общему тракту.

Аттенюатор, подключенный к выходу сумматора, позволяет снижать мощность суммарного сигнала до 55 дБ, что необходимо для исключения перегрузки АЦП цифрового приёмного модуля. Частота архитектура сигнала по аттенюатору отводится на осциллограф для визуального контроля.

Усилитель промежуточной частоты, АЧХ которого исследовалась, собран на ИС 174 УСБ. Модуль АЦП выполнен на основе быстродействующей ИС 1107ВВА, формирующей шестизарядный код напряжения сигнала, размер квanta по уровню составляет около 23 мВ.

Буферное ОЗУ обеспечивает запоминание 2048 отсчетов АЦП, разделяя их на четные и нечетные по номеер следования выборки и подавая таким образом 12-рядных комплексных отсчетов через специально разработанный двухканальный порт ввода в ПЭВМ. Время заполнения буфера при тактовой частоте 12 МГц составляет 170 мкс.

Помимо описанных средств неотъемлемой частью экспериментального стенда следует считать его программное обеспечение, разработанное на языках TURBOASSEMBLER 1.0 и TURBOSIMULATION. В качестве отличительной особенности созданного программного пакета можно отметить функционирование в интерактивном режиме, широкий набор встроенных алгоритмических возможностей ПЭВМ, выполнение арифметических операций с помощью процессора 1810ВМ87. В составе программы обеспечения функционально выделяется ряд модулей, реализующих тес или иной алгоритм обработки информации.

Модуль ввода информации обеспечивает управление режимами работы буферного ОЗУ, производит из него ввод информации через двухвентильный порт ввода и осуществляет ее раскладку. В рамках данного программного пакета предусмотрена возможность графического отображения выходных кодов АЦП на дисплее ПЭВМ и вывода их на печать.

Модуль БПФ синтезирует 16-разрядные фильтры путем операции комплексного 16-точечного преобразования Фурье над массивом кодов, сформированным модулем ввода информации.

Блок измерительных модулей представляет собой пакет алгоритмов оценивания амплитуд нескольких сигналов.

Модуль набора статистики осуществляет статистическую обработку результатов эксперимента.

Модуль оценки параметров шума
производит по заданному числу 2048-отчетных ансамблей построение гистограммы распределения реализаций шума на выходе АЦП, рассчитывает его математическое ожидание, СКО, эксцесс, асимметрию и коэффициент корреляции.

В целом рассмотренный стенд обладает широкими демонстрационными и техническими возможностями, которые полностью удовлетворяют задачам экспериментального исследования АЧХ радиоэлектронных устройств.

Формула изобретения:

1. СПОСОБ ИЗМЕРЕНИЯ АМПЛИТУДНО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК, включающий воздействие на испытуемый объект М колебаний заданных частот и аналого-цифровое преобразование отклика на входные воздействия в М последовательных моментах времени, отличающимися тем, что на испытуемый объект одновременно ведут набор колебаний из М заданных частот, аналого-цифровое преобразование откликов испытуемого объекта выполняют с периодом дискретизации, кратным нечетному числу четвертей периода центрального для подаваемого пакета частот колебаний, полученные в 2 : S (2 : S ≥ M) последовательных моментах времени 2 : S откликов объекта на суммарное входное воздействие далее подвергают операции точечного БПФ (быстрое преобразование Фурье), сформировав предварительно из входных 2 : S отсчетов сигнал S комплексных напряжений путем разделения последовательности цифровых отсчетов на четные и нечетные по номеру следования выборки с последующим использованием их в качестве квадратур, и затем по уровням спектральных составляющих определяют модули выходных сигналов испытуемого объекта на каждой из заданных частот в соответствии с выражением

\[\hat{a}_m = \sqrt{\frac{2^2}{a_m^2 + a_m^2}} \]

где \(\hat{a}_m \) = \(\frac{\det \left(\begin{array}{c} \sin S* \left(j^* \frac{\pi}{2} - \frac{\pi}{S} \right) \end{array} \right) - 1}{\sin(\hat{a}_m \omega)} \)

и

\[f_{jk} = \frac{\sin S* \left(\frac{j^* \omega}{S} - \frac{\pi}{S} \right)}{\sin(\hat{a}_m \omega)} \]

\[f \left(\omega \right) = \left[\sin S* \left(\frac{j^* \omega}{S} - \frac{\pi}{S} \right) \right]^{-1} \]

значения характеристики, синтезированных в результате БПФ-частотных фильтров; \(W_{ij}, W_{jk}, W_{km} \) - частоты из множества заданных, выраженные в долях ширины характеристики БПФ-фильтра.

2. Способ по п.1, отличаящийся тем, что параметры БПФ (общее число точек и интервал между отсчетами во времени) выбраны так, чтобы все или часть из заданных частот были "резонансными" для синтезируемых посредством БПФ частотных фильтров, применительно к таким резонансным частотам амплитуды определяют нормированной уровней соответствующих спектральных составляющих к коэффициенту S точек БПФ, что касается анализа остальных частот, не совпадающих с максимумами частотных характеристик синтезированных БПФ-фильтров, то он проводится согласно п.1.

3. Способ по пп. 1 и 2, отличающий тем, что все множество из M частот разбивают на несколько подмножеств, а внутри каждого из них последовательно осуществляют операции согласно пп. 1 и 2.

4. Способ по пп. 1-3, отличающий тем, что обработку откликов тестируемого блока сопровождают измерением модулей амплитуд тест-воздействий по эталонному каналу приема, на обладающем частотной избирательности, в качестве такового используют обычный АЦП, сигналы на вход которого подают, минуя тестируемый объект, причем сведение амплитуд сигналов по отсчетам эталонного канала происходит согласно пп. 1 и 2, а полученные по эталонному каналу результаты используют для нормировки оценки амплитуд откликов испытуемого объекта.