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ABSTRACT  
Combat models based on Lanchester equations describe a homogeneous blue force against a red force. 
However, in reality, a conflict involves multiple factions operating in multiple domains. For example, in the 
Vietnam War, US force fought alongside the South Vietnamese against the North Vietnamese. With this 
viewpoint, we provide a general model of attrition of two sides (Blue and Red) each possibly having allies 
(green etc.). Also nowadays, a conflict does not only occur in the physical domain but also in domains created 
by new and emerging technologies. For example, cyber strategies are included reflecting today's complexity 
of multi-domain operations. Our model is probabilistic in the sense that attrition rates obey density 
distributions and is based on epidemic models. It yields metrics such as the duration of the conflict and the 
number of casualties. Hence, we compare two scenarios: a) a Blue force against a Red force and b) Blue and 
Green forces against a Red force. Through Data Farming (MSG-186) analysis of the parameter space, we 
determine the chance of success of each side and what it takes to win the conflict. This gives us insights into 
modern warfare involving multi-factions and perhaps estimates the possible outcomes in multi-domain 
operations. 

1.0 INTRODUCTION 

Military simulations are useful tools to make predictions about the outcome of conflicts, plan future courses 
of action, and thus support military decision making. Ensuring these descriptions capture the essential elements 
of the military operation, the underlying models are becoming increasingly complex. Particularly in multi-
faction conflicts, the number of configurable parameters increase significantly, creating a multi-dimensional 
problem space. 

Data Farming is a methodology which combines the rapid prototyping of simulation models with the 
exploratory power of high-performance computing to quickly generate insight into the problem space. By 
performing multiple simulation runs, a variety of alternatives can be explored to improve decision makers’ 
situational awareness and provide evidence for informed and robust decisions. This process allows for the 
consideration of uncertainties and the discovery of unexpected outcomes. 

Data Farming has been codified through the efforts of MSG-088 [1] and proof-of-concept applications have 
been provided by MSG-124 [2]. To make data farming tools readily available, and for a broader audience, 
MSG-155 developed Data Farming Services (DFS), designed as a mesh of microservices [3]. DFS was tested 
with two use cases, showing its general applicability [4]. The Data Farming process can be condensed into 
four main steps: create the scenario, define the parameter values or ranges, run the simulations, analyse, and 
visualize data. Steps in the process can be repeated as required to further expand the evidence generated from 
the Data Farming process.  

Task group MSG-186, entitled Multi-Dimensional Data Farming, was initiated to demonstrate where 
Modelling and Simulation can support a multi-model, multi-element, multi-operation simulation approach to 
understand the uncertainty and complexity of future military challenges. In this paper we explore taking the 
seminal paper of Lanchester [5] to highlight where Data Farming can further exploit the original research. In 
[5] the warfare of a Blue force against a Red force is modelled in a deterministic way through the following 
system of linear differential equations: 
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 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑟𝑟 ∙ 𝑅𝑅          
𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

= −𝑏𝑏 ∙ 𝑑𝑑      (1) 

where 𝑑𝑑 (resp. 𝑅𝑅) is the size of a Blue (resp. Red) force while 𝑏𝑏 is the effectiveness of a Blue force against 
a Red force (and 𝑟𝑟 vice versa). For  𝑏𝑏, 𝑟𝑟 > 0, the victory condition for a Blue force in this simple model is 
well known, and depends on only one combined parameter: 
 

 𝜑𝜑 = �
𝑑𝑑0
𝑅𝑅0
�
2
∙
𝑏𝑏
𝑟𝑟

> 1 (2) 

where 𝑑𝑑0 (resp. 𝑅𝑅0) is the initial size of a Blue (resp. Red) force). Eq. (2) illustrates the famous Lanchester 
‘square law’, i.e., a doubling of Blue’s initial force size (𝑑𝑑0) would require a four-fold increase in Red’s 
weapon effectiveness (𝑟𝑟) to compensate.  
 

1.1 Probability of Victory 
Due to unexpected events, military operations are usually affected by a given degree of uncertainty. That is, 
the sizes of the forces are reasonably known but the effectiveness as encoded in the attrition coefficients 𝑏𝑏 
and 𝑟𝑟 fluctuate as they depend on many factors such as the time, environment, technologies and morale [6]. 
Hence, we allow 𝑏𝑏 and 𝑟𝑟 to each follow a probability distribution. The victory condition for a Blue force 
can be rearranged to 𝑍𝑍 = 𝑟𝑟 − 𝑏𝑏′ < 0, where 𝑏𝑏′ = (𝑑𝑑0 𝑅𝑅0⁄ )2 ∙ 𝑏𝑏. If 𝑏𝑏 and 𝑟𝑟 each follow independent gamma 
distributions with probability density functions 𝑓𝑓𝑏𝑏(𝑥𝑥; 𝑘𝑘𝑏𝑏 ,𝜃𝜃𝑏𝑏) and 𝑓𝑓𝑟𝑟(𝑥𝑥; 𝑘𝑘𝑟𝑟,𝜃𝜃𝑟𝑟), then the probability that a 
Blue force wins can be explicitly calculated [7]: 
 

          𝑃𝑃𝐵𝐵 = 𝑃𝑃(𝑍𝑍 < 0) =
𝜒𝜒𝑘𝑘𝑟𝑟

𝑘𝑘𝑟𝑟 ∙ (1 + 𝜒𝜒)𝑘𝑘𝑟𝑟+𝑘𝑘𝑏𝑏 ∙
𝐹𝐹12 �1,𝑘𝑘𝑟𝑟 + 𝑘𝑘𝑏𝑏 ,𝑘𝑘𝑟𝑟 + 1; 𝜒𝜒

1 + 𝜒𝜒�

Β(𝑘𝑘𝑟𝑟,𝑘𝑘𝑏𝑏)
 (3) 

where 𝐹𝐹12 (𝑎𝑎, 𝑏𝑏, 𝑐𝑐; 𝑧𝑧) is the ordinary hypergeometric function, Β(𝑧𝑧1, 𝑧𝑧2) is the beta function and: 
 

 𝜒𝜒 = �
𝑑𝑑0
𝑅𝑅0
�
2
∙
𝜃𝜃𝑏𝑏
𝜃𝜃𝑟𝑟

 (4) 

Thus, the probability of the Blue force winning depends on only three independent model parameters, the 
two gamma distribution shape parameters 𝑘𝑘𝑏𝑏 and 𝑘𝑘𝑟𝑟 and a combined parameter 𝜒𝜒. Note that Eq. (4) is a 
probabilistic generalization of Eq. (2). Figure 1-1 (a) illustrates examples of the gamma density distribution. 
Figure 1-1 (b) displays 𝑃𝑃𝐵𝐵 as a function of 𝑑𝑑0/𝑅𝑅0 and 𝜃𝜃𝑏𝑏/𝜃𝜃𝑟𝑟, assuming 𝑘𝑘𝑏𝑏 = 𝑘𝑘𝑟𝑟 = 9. The contour lines of 
equal probability reflect the relationship between these parameters encoded in 𝜒𝜒 in Eq. (4). The white line 
corresponds to 𝜑𝜑 = 1. In the deterministic case, the area of Figure 1-1 above (resp. below) the white line 
represents the situation where the Blue force wins (resp. loses). 
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Figure 1-1: (a) Examples of gamma density distribution 𝒇𝒇(𝒙𝒙;𝒌𝒌;𝜽𝜽) for 𝒌𝒌 = 𝟖𝟖,𝟗𝟗,𝟏𝟏𝟏𝟏. (b) Contour plot of the probability that 
Blue force wins 𝑷𝑷𝑩𝑩 as a function of 𝑩𝑩𝟏𝟏/𝑹𝑹𝟏𝟏 and 𝜽𝜽𝒃𝒃/𝜽𝜽𝒓𝒓. 

 
There are two ways to increase 𝑃𝑃𝐵𝐵. The first way is for a Blue force to outnumber a Red force, i.e., large 
𝑑𝑑0/𝑅𝑅0 > 1. The second way is for a Blue force to have better weapons than those of a Red force, namely 
large 𝜃𝜃𝑏𝑏/𝜃𝜃𝑟𝑟 > 1. For example, if 𝑑𝑑0/𝑅𝑅0 = 3 then 𝑃𝑃𝐵𝐵 ≥ 0.9 for 𝜃𝜃𝑏𝑏/𝜃𝜃𝑟𝑟 ≥ 0.1 which confirms the general 
planning assumption of a force ratio of 3 to 1 (as used in military planning of requiring a force ratio of 3:1 
to conduct an offensive rural operation against a hasty defence). That is, if a Blue Force is three times a Red 
force, then a Blue force wins. Similarly, if 𝜃𝜃𝑏𝑏/𝜃𝜃𝑟𝑟 = 3 then 𝑃𝑃𝐵𝐵 ≥ 0.8 for 𝑑𝑑0/𝑅𝑅0 > 0.7. If both 𝑑𝑑0/𝑅𝑅0 ≥ 1.2 
and 𝜃𝜃𝑏𝑏/𝜃𝜃𝑟𝑟 ≥ 1.2 then 𝑃𝑃𝐵𝐵 ≥ 0.9. Note that if 𝑑𝑑0/𝑅𝑅0 = 𝜃𝜃𝑏𝑏/𝜃𝜃𝑟𝑟 = 1, i.e., the size of the Blue force equals the 
one of the Red force and the effectiveness of Blue force weapons equals the one of Red force weapons, then 
as expected 𝑃𝑃𝐵𝐵 = 1/2. This result is independent of the density distribution if 𝑏𝑏 and 𝑟𝑟 follow the same 
density distribution [8]. 
 

2.0 MULTI-FACTION MODEL 

Historically, warfare often involves more than two factions [9]. For example, in the Vietnam war, South 
Vietnam fought alongside the United States of America (USA) against North Vietnam. In the Afghan war, 
there were Afghanistan Allies who fought along the USA against the Taliban. However, Lanchester 
equations model Blue force against Red force only. To accommodate reality, we extend Lanchester model 
to include a Green force: 
 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑟𝑟𝑏𝑏 ∙ 𝑅𝑅      
𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

= −𝑏𝑏 ∙ 𝑑𝑑 − 𝑔𝑔 ∙ 𝐺𝐺       
𝑑𝑑𝐺𝐺
𝑑𝑑𝑑𝑑

= −𝑟𝑟𝑔𝑔 ∙ 𝑅𝑅 + 𝛼𝛼 ∙ 𝑅𝑅    (5) 

In this paper, a Green force is an ally of a Blue force. The term 𝛼𝛼 ∙ 𝑅𝑅 incorporates the rate at which the allies 
supply weapons to a Green force in a way that is proportional to the current Red force. With the help of a 
Green force, a Blue force has a better chance to win against a Red force. In this model one can reformulate 
a Green force in terms of a Blue force. Defining 𝑟𝑟𝑔𝑔′ = 𝑟𝑟𝑔𝑔 − 𝛼𝛼 (note that 𝑟𝑟𝑔𝑔′ may be negative) one gets 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑟𝑟𝑏𝑏 ∙ 𝑅𝑅           
𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

= −
𝜆𝜆2

𝑟𝑟𝑏𝑏
∙ 𝑑𝑑 +

𝑔𝑔 ∙ Δ
𝑟𝑟𝑏𝑏

           𝐺𝐺(𝑑𝑑) = 𝐺𝐺0 +
𝑟𝑟𝑔𝑔′

𝑟𝑟𝑏𝑏
(𝑑𝑑(𝑑𝑑) − 𝑑𝑑0)       (6) 

where 𝜆𝜆2 = 𝑏𝑏 ∙ 𝑟𝑟𝑏𝑏 + 𝑔𝑔 ∙ 𝑟𝑟𝑔𝑔′ and Δ = 𝑟𝑟𝑔𝑔′ ∙ 𝑑𝑑0 − 𝑟𝑟𝑏𝑏 ∙ 𝐺𝐺0, and either may be positive or negative. Note that once 
𝑑𝑑 is known also 𝐺𝐺 is known: the influence of a Green force is now captured through 𝑔𝑔, 𝜆𝜆 and Δ.  
 

2.1 Analytical Solutions 
The force trajectory curves are the solutions to Eq. (6). For 𝜆𝜆2 > 0 these are hyperbolic:  
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 𝑅𝑅(𝑑𝑑) = 𝑅𝑅0�cosh(𝜆𝜆𝑑𝑑)− 𝜙𝜙 ∙ sinh(𝜆𝜆𝑑𝑑)� (7) 

 𝑑𝑑(𝑑𝑑) =
𝑔𝑔 ∙ Δ
𝜆𝜆2

−
𝑟𝑟𝑏𝑏𝑅𝑅0
𝜆𝜆 �sinh(𝜆𝜆𝑑𝑑)− 𝜙𝜙 ∙ cosh(𝜆𝜆𝑑𝑑)� (8) 

where 𝜙𝜙 = 𝑏𝑏∙𝐵𝐵0+𝑔𝑔∙𝐺𝐺0
𝑅𝑅0∙𝜆𝜆

> 0. For 𝜆𝜆2 < 0 they are trigonometric: 

 𝑅𝑅(𝑑𝑑) = 𝑅𝑅0 �cos��̅�𝜆𝑑𝑑� − 𝜙𝜙� ∙ sin��̅�𝜆𝑑𝑑�� (9) 

 𝑑𝑑(𝑑𝑑) = −
𝑔𝑔 ∙ Δ
�̅�𝜆2

−
𝑟𝑟𝑏𝑏𝑅𝑅0
�̅�𝜆

�sin��̅�𝜆𝑑𝑑� + 𝜙𝜙� ∙ cos��̅�𝜆𝑑𝑑�� (10) 

with 𝜙𝜙� = 𝑏𝑏∙𝐵𝐵0+𝑔𝑔∙𝐺𝐺0
𝑅𝑅0∙𝜆𝜆�

> 0 and �̅�𝜆 = |𝜆𝜆|. For 𝜆𝜆2 = 0 they are polynomial: 

 𝑅𝑅(𝑑𝑑) = 𝑅𝑅0 +
𝑔𝑔Δ
𝑟𝑟𝑏𝑏
𝑑𝑑 (11) 

 𝑑𝑑(𝑑𝑑) = 𝑑𝑑0 − 𝑟𝑟𝑏𝑏𝑅𝑅0𝑑𝑑 −
𝑔𝑔Δ
2
𝑑𝑑2 (12) 

For illustrations, we plot the sizes of a Blue force, a Red force and a Green force as a function of time with 
𝜆𝜆2 positive in Figure 2-1. Blue wins in the scenario of Figure 2-1. 

 

 

Figure 2-1: Blue, Red and Green force size as functions of time for 𝝀𝝀𝟐𝟐 > 𝟏𝟏. We have chosen the parameters so that the Blue 
force wins even though the Red force outnumbers the Blue force by a factor of 2: 𝑹𝑹𝟏𝟏 = 𝟐𝟐𝟏𝟏 , 𝑩𝑩𝟏𝟏 = 𝟏𝟏0 and 𝑮𝑮𝟏𝟏 = 𝟐𝟐. We set 𝒃𝒃 =

𝟔𝟔, 𝒓𝒓𝒃𝒃 = 𝟑𝟑, 𝒓𝒓𝒈𝒈 = 𝟑𝟑, 𝜶𝜶 = 𝟔𝟔 and 𝒈𝒈 = 𝟓𝟓 so that 𝒓𝒓𝒈𝒈′ = −𝟑𝟑, 𝝀𝝀𝟐𝟐 = 𝟔𝟔, 𝝓𝝓 = 𝟕𝟕/(𝟐𝟐√𝟑𝟑) and 𝜟𝜟 = −𝟑𝟑𝟔𝟔.  

2.2 Victory Condition 
The advantage of reformulating 𝐺𝐺(𝑑𝑑) in terms of 𝑑𝑑(𝑑𝑑) is that the system of Eq. (6) consists of just two linear 
differential equations which are separable. Depending on the value of 𝜆𝜆, these equations can be rewritten in a 
form representing a conic section. If 𝜆𝜆2 > 0 (resp. 𝜆𝜆2 < 0) they represent a hyperbola (resp. an ellipse): 
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 �𝑑𝑑(𝑑𝑑) −
𝑔𝑔 ∙ Δ
𝜆𝜆2

�
2
−
𝑟𝑟𝑏𝑏2

𝜆𝜆2
𝑅𝑅2(𝑑𝑑) = �𝑑𝑑0 −

𝑔𝑔 ∙ Δ
𝜆𝜆2

�
2
−
𝑟𝑟𝑏𝑏2

𝜆𝜆2
𝑅𝑅02 (13) 

If 𝜆𝜆2 = 0, they represent a parabola 

 𝑅𝑅2(𝑑𝑑) = −
2 ∙ 𝑔𝑔 ∙ Δ
𝑟𝑟𝑏𝑏2

𝑑𝑑(𝑑𝑑) +
2 ∙ 𝑔𝑔 ∙ Δ
𝑟𝑟𝑏𝑏2

𝑑𝑑0 + 𝑅𝑅02 (14) 

From these phase space equations, one can determine a victory condition for a Blue force. By requiring 
𝑅𝑅(𝑑𝑑∗) = 0 and 𝑑𝑑(𝑑𝑑∗) > 0 for some finite time 𝑑𝑑∗, one obtains: 

 
𝜆𝜆2 ∙ 𝑑𝑑02 − 𝑟𝑟𝑏𝑏2 ∙ 𝑅𝑅02

2 ∙ 𝑔𝑔 ∙ 𝑑𝑑0
> Δ (15) 

Hence, if the above inequality holds, a Blue force wins. To show this explicitly, one can reformulate Eq. (15) 
in terms of the original model parameters: 

 𝜑𝜑 > 1 + �
𝑑𝑑0
𝑅𝑅0
�
2
∙
𝑔𝑔
𝑟𝑟𝑏𝑏
∙ �
𝑟𝑟𝑔𝑔′

𝑟𝑟𝑏𝑏
− 2 ∙

𝐺𝐺0
𝑅𝑅0
� (16) 

Now, it is apparent how the victory condition of the original Lanchester model (i.e., 𝜑𝜑 > 1) is modified by the 
introduction of a Green force. In particular, the sign of the last bracketed term mostly determines whether a 
Blue force wins or not. If the initial support from Green is sufficiently large (i.e., 𝐺𝐺0/𝑑𝑑0 > 𝑟𝑟𝑔𝑔′/2𝑟𝑟𝑏𝑏) then a Blue 
force is facilitated to win (N.B. if 𝑟𝑟𝑔𝑔′ < 0, this is always the case). Depending on the magnitude of 𝑔𝑔 (the 
effectiveness of a Green force against Red), a Blue force is even more facilitated to win.  

Alternatively, one can express the victory condition Eq. (15) as a function relating 𝑑𝑑0/𝑅𝑅0 and 𝑏𝑏/𝑟𝑟𝑏𝑏: 

 
𝑑𝑑0
𝑅𝑅0

> ��
𝑏𝑏
𝑟𝑟𝑏𝑏
−
𝑔𝑔
𝑟𝑟𝑏𝑏
∙
𝑟𝑟𝑔𝑔′

𝑟𝑟𝑏𝑏
+ �

𝑔𝑔
𝑟𝑟𝑏𝑏
∙
𝐺𝐺0
𝑅𝑅0
�
2
−
𝑔𝑔
𝑟𝑟𝑏𝑏
∙
𝐺𝐺0
𝑅𝑅0
� /�

𝑏𝑏
𝑟𝑟𝑏𝑏
−
𝑔𝑔
𝑟𝑟𝑏𝑏
∙
𝑟𝑟𝑔𝑔′

𝑟𝑟𝑏𝑏
� (17) 

In this way, we can better study the implication of the initial support from Green. In Figure 2-2 we plot 𝑑𝑑0/𝑅𝑅0 
as a function of 𝑏𝑏/𝑟𝑟𝑏𝑏 according to the victory condition Eq. (17). Figure 2-2(a) (resp. Figure 2-2(b)) represents 
the victory condition for 𝑔𝑔/𝑟𝑟𝑏𝑏 = 1 (resp. 𝑔𝑔/𝑟𝑟𝑏𝑏 = 0.5). Note that, if either the initial support from Green 𝐺𝐺0 or 
the weapon effectiveness of Green against Red 𝑔𝑔/𝑟𝑟𝑏𝑏 is insufficient, there is a critical threshold of Blue’s 
weapon effectiveness against Red (𝑏𝑏/𝑟𝑟𝑏𝑏) below which Blue can never win, irrespective of any initial force 
ratio advantage. This phenomenon only occurs in the multi-faction model.  
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Figure 2-2: Victory condition for Blue in the multi-faction model in terms of 𝑩𝑩𝟏𝟏/𝑹𝑹𝟏𝟏 as a function of 𝒃𝒃/𝒓𝒓𝒃𝒃 for (a) 
𝒈𝒈/𝒓𝒓𝒃𝒃 = 𝟏𝟏 and (b) 𝒈𝒈/𝒓𝒓𝒃𝒃 = 𝟏𝟏.𝟓𝟓. Here, 𝒓𝒓𝒈𝒈′ /𝒓𝒓𝒃𝒃 = 𝟏𝟏 and we consider two possible values of the initial support from 
Green given by 𝑮𝑮𝟏𝟏/𝑹𝑹𝟏𝟏 = 𝟏𝟏 (dashed blue lines) and 𝑮𝑮𝟏𝟏/𝑹𝑹𝟏𝟏 = 𝟏𝟏.𝟓𝟓 (dot-dashed red lines). Black lines represent 

the victory condition according to the original Lanchester model given by Eq. (2). 

2.3 Probability of Victory 
The victory condition Eq. (15) can also be rearranged to: 

 𝑍𝑍 =
𝑏𝑏
𝑟𝑟𝑏𝑏
−
𝑔𝑔
𝑟𝑟𝑏𝑏
∙ �
𝑟𝑟𝑔𝑔
𝑟𝑟𝑏𝑏
−
𝛼𝛼
𝑟𝑟𝑏𝑏
� + 2 ∙

𝐺𝐺0
𝑑𝑑0

∙
𝑔𝑔
𝑟𝑟𝑏𝑏
−
𝑅𝑅02

𝑑𝑑02
> 0 (18) 

so that the probability that a Blue force wins is defined as: 

 
𝑃𝑃𝐵𝐵 = 𝑃𝑃(𝑍𝑍 > 0) = � 𝑓𝑓𝑔𝑔/𝑟𝑟𝑏𝑏(𝑔𝑔′)� 𝑓𝑓𝑟𝑟𝑔𝑔/𝑟𝑟𝑏𝑏(𝑟𝑟′)

∞

0

� 𝑓𝑓𝛼𝛼/𝑟𝑟𝑏𝑏(𝛼𝛼′)
∞

0

� 𝑓𝑓𝑏𝑏/𝑟𝑟𝑏𝑏(𝑏𝑏′)
∞

0

∞

0

∙ Η�𝑏𝑏′ − 𝑔𝑔′ ∙ (𝑟𝑟′ − 𝛼𝛼′) + 2 ∙
𝐺𝐺0
𝑑𝑑0

∙ 𝑔𝑔′ −
𝑅𝑅02

𝑑𝑑02
� ∙ 𝑑𝑑𝑏𝑏′ ∙ 𝑑𝑑𝛼𝛼′ ∙ 𝑑𝑑𝑟𝑟′ ∙ 𝑑𝑑𝑔𝑔′ 

(19) 

where each 𝑓𝑓𝑥𝑥
𝑦𝑦

(𝑧𝑧) is an appropriate probability density function for the ratio of the two random parameters, 

and where Η(𝑥𝑥) is the Heaviside step function (one if 𝑥𝑥 > 0 and zero otherwise). If, as before, we assume 
each random variable follows independent gamma distributions, the ratio of two independent gamma 
distributions is known to follow a generalized beta prime distribution with shape parameter equal to one (also 
called a compound gamma distribution).  

While for the Lanchester model, the integrals defining 𝑃𝑃𝐵𝐵 can be analytically calculated in terms of special 
functions, the introduction of a Green force complicates this calculation significantly. Instead, we can 
approximate 𝑃𝑃𝐵𝐵 using Monte Carlo sampling according to the gamma density functions for 𝑏𝑏, 𝑟𝑟𝑏𝑏 ,𝑔𝑔, 𝑟𝑟𝑔𝑔 and 𝛼𝛼, 
and simply record the proportion of times Eq. (18) holds, or use numerical quadrature to approximate the 
integral in Eq. (19). 
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Figure 2-3: Probability that Blue force wins as a function of (a) 𝜽𝜽𝜶𝜶/𝜽𝜽𝒓𝒓𝒃𝒃 and 𝜽𝜽𝒃𝒃/𝜽𝜽𝒓𝒓𝒃𝒃 (= 𝜽𝜽𝒈𝒈
𝜽𝜽𝒓𝒓𝒃𝒃

) with 𝑮𝑮𝟏𝟏 = 𝟐𝟐 and (b) 𝑩𝑩𝟏𝟏
𝑹𝑹𝟏𝟏

 

and 𝜽𝜽𝒃𝒃
𝜽𝜽𝒓𝒓𝒃𝒃

 (= 𝜽𝜽𝒈𝒈
𝜽𝜽𝒓𝒓𝒃𝒃

= 𝜽𝜽𝜶𝜶
𝜽𝜽𝒓𝒓𝒃𝒃

) with 𝑮𝑮𝟏𝟏 = 𝟏𝟏. 

Regarding Figure 2-3(a), since the mean of a gamma density distribution is 𝑘𝑘 ∙ 𝜃𝜃, we could think of the mean 
having similar effects as the deterministic attrition coefficients e.g., 𝑏𝑏~𝑘𝑘𝑏𝑏 ∙ 𝜃𝜃𝑏𝑏. By assuming the same value 
of 𝑘𝑘 for all density distributions, the ratio of the attrition coefficients is similar to the ratio of the scale 
parameters 𝜃𝜃, e.g., 𝛼𝛼/𝑟𝑟𝑏𝑏~𝜃𝜃𝛼𝛼/𝜃𝜃𝑟𝑟𝑏𝑏. Therefore, as 𝜃𝜃𝛼𝛼/𝜃𝜃𝑟𝑟𝑏𝑏 and 𝜃𝜃𝑏𝑏/𝜃𝜃𝑟𝑟𝑏𝑏 = 𝜃𝜃𝑔𝑔/𝜃𝜃𝑟𝑟𝑏𝑏 a Blue force increases the 
probability of winning. This means that even though a Blue force is initially outnumbered by a Red force 
by a factor of two, it is still possible for a Blue force to win if it has sufficient support from a Green force.  

This support is not only in the size of the Green force but is also reflected in the multidimensional warfare. 
That is, if a Blue force and a Green force have superior technologies then both 𝜃𝜃𝛼𝛼/𝜃𝜃𝑟𝑟𝑏𝑏 and 𝜃𝜃𝑏𝑏/𝜃𝜃𝑟𝑟𝑏𝑏 = 𝜃𝜃𝑔𝑔/𝜃𝜃𝑟𝑟𝑏𝑏 
increase which increases the probability that a Blue force wins. This could be attributed to better weapons 
or better communications for example. Also, if a Blue force and/or a Green force can conduct a cyber-attack 
against a Red force, weakening their weapon effectiveness, the same effect will occur.  

Figure 2-3(b) displays the probability that Blue force wins assuming 𝐺𝐺0 = 0, and is like Figure 1-1. 
However, a Green force is also fighting against a Red force according to Eq. (5) and therefore 𝑃𝑃𝐵𝐵 is larger 
than in Figure 1-1. In Figure 2-3(b), a Blue curve depicts a possible path that will improve 𝑃𝑃𝐵𝐵.  
Mathematically, the curve of steepest descent/ascent is along the gradient of 𝑃𝑃𝐵𝐵 as a function of its variables. 
In reality, such a blue path is associated with multiple costs, e.g., the support from a Green force.  That path 
also depends on available technologies, their effectiveness and how the technologies function together. For 
example, a cyber-attack by a Blue-Green force could reduce the effectiveness of a Red force. Also, if a 
Green force has access to modern weapons, then the effectiveness of a Green force could increase.  

Improvements in size are reflected in 𝑑𝑑0,𝐺𝐺0, 𝑅𝑅0 while improvements in effectiveness are reflected in the 
probability density function hyper-parameters of the attrition coefficients 𝑏𝑏,𝑔𝑔, 𝑟𝑟𝑔𝑔 and 𝑟𝑟𝑏𝑏. In a multi-faction 
conflict, with sufficient support from an ally (a Green force), a Blue force could overcome a powerful Red 
force. This support is modelled through the parameter 𝛼𝛼, and the characteristics of such a pathway will rely 
on multi-dimensional Data Farming.  
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3.0 MULTI-DOMAIN MODEL 

The multi-faction model Eq. (5) operates solely in the physical domain. To accommodate the cyber domain, 
we consider the Blue force composed by army systems interconnected by a peer-to-peer network susceptible 
to cyber attacks. These cyber attacks (hereafter, simply called virus) spread among the army systems like an 
infection reducing the effectiveness of the infected units. As a countermeasure, the Blue force may employ 
cyber defence tactics which immunize susceptible and infected units against the virus. To describe the possible 
spread of the virus [10, 11] we extend the classical epidemic models [12, 13]. Following [14] we decompose 
the Blue force into compartments  

 𝑑𝑑(𝑑𝑑) = 𝑑𝑑1(𝑑𝑑) + 𝑑𝑑2(𝑑𝑑) + 𝑑𝑑3(𝑑𝑑) (20) 

where 𝑑𝑑𝑗𝑗 = 𝑑𝑑𝑗𝑗(𝑑𝑑), 𝑗𝑗 = 1, … , 3 correspond to the number of susceptible, infected and recovered units, 
respectively. Then, in the cyber domain we assume three possible transitions between compartments:  

 
𝑑𝑑1 → 𝑑𝑑2 a susceptible Blue unit is infected by the virus 
𝑑𝑑1 → 𝑑𝑑3 a susceptible Blue unit is raised to be immune against the virus 
𝑑𝑑2 → 𝑑𝑑3 an infected Blue unit is recovered and raised to immune against the virus 
 

(21) 

Incorporating this cyber domain into Eq. (5) yields: 

         
𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

= �−𝛽𝛽𝑉𝑉 ∙ 𝑑𝑑2 − 𝛽𝛽𝐴𝐴 ∙ 𝑑𝑑3 − 𝑟𝑟𝑏𝑏 ∙
𝑅𝑅
𝑑𝑑�
𝑑𝑑1 (22) 

         
𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

= �+𝛽𝛽𝑉𝑉 ∙ 𝑑𝑑1 − 𝛽𝛽𝐴𝐴 ∙ 𝑑𝑑3 − 𝑟𝑟𝑏𝑏 ∙
𝑅𝑅
𝑑𝑑�
𝑑𝑑2 (23) 

 𝑑𝑑𝑑𝑑3
𝑑𝑑𝑑𝑑

= �+𝛽𝛽𝐴𝐴(𝑑𝑑1 + 𝑑𝑑2) − 𝑟𝑟𝑏𝑏 ∙
𝑅𝑅
𝑑𝑑�
𝑑𝑑3 (24) 

                  
𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

= −𝑏𝑏𝑟𝑟,𝐴𝐴(𝑑𝑑1 + 𝑑𝑑3) − 𝑏𝑏𝑟𝑟,𝑉𝑉 ∙ 𝑑𝑑2 − 𝑔𝑔𝑟𝑟 ∙ 𝐺𝐺 (25) 

 𝑑𝑑𝐺𝐺
𝑑𝑑𝑑𝑑

= −𝑟𝑟𝑔𝑔′ ∙ 𝑅𝑅 (26) 

Here, the non-negative parameter 𝛽𝛽𝑉𝑉 (resp. 𝛽𝛽𝐴𝐴) originates from the part of the model describing the cyber 
domain and it is related to the occurrence rate of the virus infection (resp. the immunization) within the Blue 
force. The non-negative parameter 𝑏𝑏𝑟𝑟,𝑉𝑉  (resp. 𝑏𝑏𝑟𝑟,𝐴𝐴) encodes the weapon effectiveness of the infected (resp. 
susceptible and recovered) Blue units against the Red force in the physical domain. In general, 𝑏𝑏𝑟𝑟,𝑉𝑉 ≤ 𝑏𝑏𝑟𝑟,𝐴𝐴 
since the infected units are less effective against the Red force. Note that in this version of the model the Red 
force is unaffected by the virus.    

Figure 3-1 displays the solution of Eq. (22-26) where we have chosen values of the parameters to allow 
comparison with the results in Figure 2-1. Note that in general, the virus infection by the Red force reduces 
the Blue force and delays the Blue victory. Conversely, the Green force, being unaffected by the cyber attack, 
reaches a larger number of units compared with Figure 2-1.  
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Figure 3-1: Blue, Red and Green force size as functions of time as solutions of Eq. (22-26). Here  𝑩𝑩𝟏𝟏(𝟏𝟏) = 𝟕𝟕, 𝑩𝑩𝟐𝟐(𝟏𝟏) = 𝟐𝟐, 
𝑩𝑩𝟑𝟑(𝟏𝟏) = 𝟏𝟏, so that 𝑩𝑩(𝟏𝟏) = 𝟏𝟏𝟏𝟏, while 𝑹𝑹(𝟏𝟏) = 𝟐𝟐𝟏𝟏 and 𝑮𝑮(𝟏𝟏) = 𝟐𝟐. The values of the attrition parameters are: 𝒓𝒓𝒃𝒃 = 𝟑𝟑, 𝒃𝒃𝒓𝒓,𝑨𝑨 = 𝟔𝟔, 
𝒃𝒃𝒓𝒓,𝑽𝑽 = 𝟑𝟑, 𝒈𝒈𝒓𝒓 = 𝟓𝟓, 𝒓𝒓𝒈𝒈′ = −𝟑𝟑. The parameters describing the virus infection and immunization value: 𝜷𝜷𝑽𝑽 = 𝟏𝟏.𝟓𝟓 and  𝜷𝜷𝑨𝑨 = 𝟏𝟏.𝟓𝟓. 

4.0 DATA FARMING 

While the simple Lanchester model Eq. (1) is completely solvable and the probability of Blue force winning 
is analytically tractable Eq. (3), extensions to accommodate the multi-faction (Eq. (5)), probabilistic (Eq. 
(19)), and multi-domain (Eq. (22-26)) aspects of contemporary military operations underpin the requirement 
for efficient Data Farming analyses as described in the introduction.  

For example, if the eight parameters of the multi-faction, multi-domain model Eq. (22-26) each follow a 
distribution characterised by two hyper-parameters (e.g., the scale and shape parameters of the gamma 
distribution), then together with the five initial force sizes of Blue, Red and Green, this represents a twenty-
one dimensional factor space that influences whether a Blue force wins or not.  

If we wanted to fit a fully second-order logistic regression meta-model (to identify non-linearity and combat 
multipliers) this would require determining 21 main effects, 21 quadratic terms, and 210 two-factor 
interactions (252 meta-model coefficients in total). This will require an efficient design of experiment of the 
parameter space, effective analysis tools, and explainable visualizations to provide military decision makers 
with timely, relevant, and robust data-driven insights. 

5.0 SUMMARY 

This paper has illustrated the influence that allies (Green force) may have on the outcome of a conflict between 
a Blue force and a Red force, in that, based on the magnitude and the timeline of the support from the allies, 
an initially weaker Blue force could overcome an initially stronger Red force. Although our approach is still 
theoretical and lacks details, it provides a pathway to analyse multi-faction conflicts.  

By including additional fidelity, e.g., land force, maritime force, and air force, we could in principle determine 
the level of support required from a Green force such that a Blue force could win against a Red force.  The 
approach could also be generalized to the case of coalition confrontations, where many additional participants 
are considered as third parties to the conflict, taking situationally different influences on the intensity and 
direction of the dynamics of hostilities. 
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However, as the complexity of models increases, so do their input parameters. For the calculation of results 
and predictions, Data Farming provides the necessary toolbox so that appropriate conclusions can be drawn. 
Through multi-dimensional Data Farming, we hope to discover new possibilities that may not be obvious but 
may be present in modern technologies and their combinations and give us further insights of multi-domain 
operations in multi-faction conflicts. Task group MSG-186, through its program of work, is progressing 
towards that end. 

Clearly, substantial work lies ahead of us to understand the dynamics of multi-faction conflict in multi-domain 
operations. However, we believe it is a worthwhile endeavour as multi-faction conflicts have occurred so many 
times in the history of humanity. 
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