ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
АППАРАТ ГУБЕРНАТОРА И ПРАВИТЕЛЬСТВА НИЖЕГОРОДСКОЙ ОБЛАСТИ
Управление информатизации
Государственное образовательное учреждение высшего профессионального образования
НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
им. Р.Е. АЛЕКСЕЕВА
Институт радиоэлектроники и информационных технологий
РОССИЙСКОЕ НАУЧНО-ТЕХНИЧЕСКОЕ ОБЩЕСТВО РАДИОТЕХНИКИ,
ЭЛЕКТРОННИКИ И СВЯЗИ им. А.С.ПОПОВА

II МЕЖДУНАРОДНЫЙ ФОРУМ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ
«IT FORUM 2020 / ЯРМАРКА АНТИКРИЗИСНЫХ РЕШЕНИЙ»
XV МЕЖДУНАРОДНАЯ НАУЧНО-ТЕХНИЧЕСКАЯ КОНФЕРЕНЦИЯ

ИНФОРМАЦИОННЫЕ СИСТЕМЫ
И ТЕХНОЛОГИИ
ИСТ - 2009

МАТЕРИАЛЫ КОНФЕРЕНЦИИ

НИЖНИЙ НОВГОРОД 2009
В сборнике представлены материалы докладов XV Международной научно-технической конференции, проведенной в рамках II Международного форума информационных технологий «IT FORUM 2020 / ЯРМАРКА АНТИКРИЗИСНЫХ РЕШЕНИЙ» 17 апреля 2009 г. дирекцией Института радиоэлектроники и информационных технологий при поддержке аппаратом Губернатора и Правительства Нижегородской области, ректоратом НГТУ им. Р.Е. Алексеева и Нижегородским областным правлением РНТО РЭС им. А.С. Попова.


Организационный комитет:

В.Г. Баранов (председатель), М.К. Богдалова (зам.председателя), Ю.С. Бажанов, В.И. Есипенко, Ю.Г. Белов, В.В. Кондратьев, В.Р. Милов, С.Н. Митяков, С.Л. Морукин, С.Б. Раева, А.Г. Рындыш, С.Г. Сажин, Р.М. Сидорук, М.В. Ульянов, В.П. Храмилов, В.Л. Ягодкин


© Нижегородский государственный технический университет им. Р.Е. Алексеева, 2009
СОДЕРЖАНИЕ

СЕКЦИЯ 1
РАДИОТЕХНИЧЕСКИЕ СИСТЕМЫ И УСТРОЙСТВА ....5

СЕКЦИЯ 2
ПРОЕКТИРОВАНИЕ РАДИОЭЛЕКТРОННЫХ УСТРОЙСТВ ВЧ И СВЧ ДИАПАЗОНОВ ...52

СЕКЦИЯ 3
ТЕЛЕКОММУНИКАЦИОННЫЕ СИСТЕМЫ ....87

СЕКЦИЯ 4
ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ ....148

СЕКЦИЯ 5
ТЕХНИЧЕСКАЯ КИБЕРНЕТИКА ....233

АЛФАВИТНЫЙ УКАЗАТЕЛЬ ....327
работы мульти-MIMO следует провести оценку количества источников перерасчётов и оценить их угловые координаты. Такая задача решается обычно путем передачи корреспондентами пилотных сигналов, известных приемной стороне. Однако при числе источников, большем двух, необходимо выполнение операций отбора среди полученных оценок углового положения "горячих" точек их наиболее правдоподобных значений. Разработку и анализ соответствующих алгоритмов следует рассматривать в качестве направления дальнейших исследований.

E-mail: swadim@inbox.ru, masesov@rambler.ru

В.И. СЛЮСАР, А.А. ТРОЦКО
(Военный институт телекоммуникаций и информатизации Национального технического университета Украины "Киевский политехнический институт")

КОМПЕНСАЦИЯ ЭФФЕКТА ДОППЛЕРА В КАНАЛАХ СВЯЗИ
С РЕТРАНСЛЯТОРАМИ ДЕЦЕНТРАЛИЗОВАННЫХ СЕТЕЙ

Современный этап в развитии беспилотной техники характеризуется разнообразием типов летательных аппаратов как по применению, так и по назначению. Достаточно важным направлением является использование беспилотных летательных аппаратов (БПЛА), барражирующих длительное время и передающих информацию в реальном масштабе времени. Речь идёт о децентрализованных системах связи, содержащих множество автономных узлов, функционирующих не только как привычные приёмники и передатчики, но и как ретрансляторы. При этом все узлы (устройства связи) сети унифицированы, используют общий протокол, создавая единое поле обмена информацией.

Несмотря на достигнутые успехи, при создании подобных сетей существует ряд актуальных проблем, среди которых следует отметить необходимость согласования частотных диапазонов и повышения пропускной способности каналов связи с бортовыми ретрансляторами в условиях допплеровских сдвигов частоты. Дело в том, что большие скорости движения БПЛА приводят к существенному превышению эффекта Допплера, сопровождающемуся ухудшением приема и возможной потерей данных. Для борьбы с допплеровскими сдвигами частоты предлагается использовать метод неортогональной частотной дискретной модуляции (N-OFDM), в котором в отличие от ортогональной частотной дискретной модуляции (OFDM), для компенсации допплеровского эффекта нет необходимости увеличивать защитные интервалы, что привело бы к потере пропускной способности каналов связи. Метод N-OFDM позволяет производить учёт эффекта Допплера непосредственно перед демодуляцией в приемнике радиолокации.

Устранение влияния допплеровских смещений частоты в этом случае опирается на оценку частоты Допплера по пилот-сигналу. Упрощенный вариант компенсации состоит в том, что для всех сигналов пакета используется одинаковая оценка частотного сдвига. Рассмотрим вариант компенсации, воспользовавшись для оценивания квадратурных составляющих амплитуд сигналов методом максимального правдоподобия. Информационный эквивалент функции правдоподобия для комплексной формы представления суммы M гармонических сигналов по выходам АЦП может быть записан в виде

$$L_M = \sum_{s=1}^{S} \left[ \left( U_s^x - \sum_{m=1}^{M} a_m \cos(\omega_m s - l + \varphi_m) \right)^2 + \left( U_s^y - \sum_{m=1}^{M} a_m \sin(\omega_m s - l + \varphi_m) \right)^2 \right]$$, (1)

где \( U_s^x, U_s^y \) – квадратурные составляющие напряжений сигнальной смеси по выходу АЦП в s-m временному отсчете; \( a_m \) – амплитуда m-го гармонического сигнала; \( S \) – общее количество временных отсчетов, подвергаемых обработке (\( S \geq M \)); \( s \) – порядковый номер отсчета АЦП в пределах сигнальной выборки; \( \omega_m \) – радіальная частота m-го сигнала; \( \varphi_m \) – его начальная фаза.
Для минимизации (1) относительно неизвестных оценок амплитуд с учётом допплеровских сдвигов частоты в формулу необходимо подставить измеренные значения соответствующей частоты Допплера $\Delta_D$, приведенные к радиальному виду:

$$ L_M = \sum_{s=1}^{S} \left[ \frac{U^s_1 - \sum_{m=1}^{M} a_m \cos((\omega_m + \Delta_D)\Delta t(s-1) + \varphi_m)}{2} \right] + \left[ \frac{U^s_2 - \sum_{m=1}^{M} a_m \sin((\omega_m + \Delta_D)\Delta t(s-1) + \varphi_m)}{2} \right]. $$

Процедура демодуляции, удовлетворяющая условию (2), не требует дополнительных корректирующих операций по устранению паразитного фазового набега, сопутствующего синтезу частотных фильтров на основе быстрого преобразования Фурье (БПФ).

Для повышения точности оценивания амплитуд сигналов весь диапазон рабочих частот может быть разбит на поддиапазоны, в каждом из которых используется своя оценка допплеровского сдвига частоты. Более точный учет негативного проявления допплеровского эффекта возможен при подстановке для каждой $m$-й поднесущей частоты коэффициента $\Delta_{D,m}$. Однако на практике заслуживает внимания смешанный вариант компенсации, когда часть частот объединяют в группы, внутри которых применяется общий групповой коэффициент компенсации допплеровского сдвига частоты $\Delta_{Dg,m}$, а для выбранных частотных поддиапазонов сохраняется индивидуальная (дифференцированная) привязка коэффициентов допплеровского сдвига частоты к конкретной поднесущей. Такой режим частотной привязки целесообразно сохранить, например, в отношении сигналов центральной частотной группы, для которых характерны наибольшие ошибки оценивания амплитуд сигналов. В отношении окаймляющих частот N-OFDM-пакета сигналов, на которых ошибки измерения амплитуд минимальны, может быть применен рассмотренный ранее принцип групповой компенсации допплеровского эффекта.

Описанный смешанный вариант обработки сигналов позволяет оптимально распределить ограниченный вычислительный ресурс, сосредоточив его в отношении частот, наиболее уязвимых с точки зрения достижимой точности оценивания амплитуд сигналов. Помимо отмеченной группы центральных частот, к числу таких уязвимых поднесущих можно отнести их уплотненные группы, возникающие в результате перераспределения рабочей полосы в условиях действия активных помех, либо частоты, соседствующие со спектральной областью, пораженной помехами. Кроме того, дифференцированная привязка допплеровских поправок уместна для поднесущих, на которых требуется сохранить высокий порядок квадратурно-амплитудной модуляции.

Для оценки достижимой точности оценивания амплитуд сигналов может быть использована двухэтапная методика. Первоначально следует определить потенциальную точность оценивания допплеровского сдвига частоты пилот-сигнала. Для этого целесообразно воспользоваться расчетом нижней границы Крамера–Рао (НГКР) для дисперсии несмещенной оценки частоты $\sigma^2_N$. Рассмотрено может подлежать одночастотная измерительная процедура или же ее многочастотная альтернатива, заключающаяся в оценке радиальной скорости БПЛА по совокупности пилот-сигналов нескольких частот. Предполагается, что многочастотный вариант будет более точным, если регламентировать величины амплитуд всех пилот-сигналов, связыв их известными коэффициентами с амплитудой сигнала опорной частоты. Аналогичный прием следует применить и в отношении неизвестных допплеровских сдвигов частот, выразив номинальные всех поднесущих через значение частоты сигнала, выбранного в качестве опорного. Перечисленные ограничения на параметры многочастотного пакета позволяют свести задачу многосигнального оценивания к односигнальной и тем самым минимизировать размерность информационной матрицы Фишера, ограничившись при его формировании расчетом вторых частных производных по неизвестным параметрам единственно сигнала.

На втором этапе определяются непосредственно дисперсии оценок квадратурных составляющих амплитуд сигналов, которые удобно представить в качестве вектора дисперсии $\sigma^2_d$. При этом проблемным вопросом является учет при определении $\sigma^2_d$ полученных ранее дисперсий.
ошибок оценивания частоты $\sigma_n^2$. В качестве варианта расчетной процедуры представляется возможным воспользоваться упрощенной методикой формирования НГКР. Суть ее состоит в том, что в исходную информационную матрицу Фишера, вместо математического ожидания второй частной производной функционала правдоподобия (2), по неизвестной частоте сигнала $\omega$ подставляется величина, обратная дисперсии оценивания частоты $\sigma_n^2$, полученной на первом этапе. В качестве аналитической вариации расчета дисперсии амплитуд может быть применена процедура разложения оценки вектора амплитуд сигналов в окрестности их истинного значения в ряд Тейлора. Для проверки работоспособности и границ применимости обоих вариантов методики приближенного расчета $\sigma_A^2$ планируется проведение вычислительного эксперимента.

E-mail: swadim@inbox.ru, trocko_aa@mail.ru

И.Н. КОЗУБЦОВ, А.И. МИНОЧКИН, О.В. КОКОТОВ
(Военный институт телекоммуникаций и информатизации Национального технического университета Украины «Киевский политехнический институт»)

АНАЛИТИЧЕСКОЕ ОБОСНОВАНИЕ ИСПОЛЬЗОВАНИЯ МЕТОДОВ ТЕХНИЧЕСКОГО АНАЛИЗА ДЛЯ ПРОГНОЗИРОВАНИЯ ИЗМЕНЕНИЯ УРОВНЯ ШУМА В ПРОЦЕССЕ ВЕДЕНИЯ КОРОТКОВОЛНОВОЙ РАДИОСВЯЗИ

Постановка задачи. Системы коротковолновой радиосвязи являются нечеткой системой, которая не поддается формальному описанию даже с помощью аппарата математической статистики. Достоверность прогнозирования — ключевая проблема для адаптации системы радиосвязи, поскольку позволяет осуществлять переход на другие рабочие частоты до того, как произошло ухудшение связи. Возникает необходимость прогнозировать начало ухудшения радиосвязи за счет увеличения уровня шума на отдельно выбранных частотах. Таким образом, такие параметры, как точность прогнозирования и его своевременность, зависят от условий, в которых функционирует система связи, и верно выбранного подхода к построению прогнозной модели.

Актуальность и новизна. Для повышения надежности радиосвязи желательно прогнозировать уровни случайных помех на ближайшие минуты, а также на одни и те же часы ближайших суток, сезона и года.

Одна из основных гипотез о природе прогнозирования заключается в том, что выводы о вероятности предстоящего события или значения случайной величины делаются на основе изучения, анализа и обобщения предыдущего опыта — истории предсказываемого явления.

Значение уровней (или спектральных плотностей) помех в любой географической точке приема не являются случайными стационарными функциями, хотя бы в силу наличия суточной и годовой периодичности изменения состояния слоев ионосферы. Важность решения вопроса прогнозирования в радиосвязи очевидна. Как известно, свойство ионосферы в обычных условиях изменяется относительно медленно. Это в основном предопределяет ограниченный во времени статически устойчивый квазистационарный характер усредненных последовательностей уровней помех. Такое положение дает возможность применять методы прогнозирования стационарных процессов к квазистационарным.

Статистический прогноз уровней помех на каждой из частот может быть осуществлен на основе знания поведения процесса в прошлом до момента $t$, т.е. на основе непрерывной регистрации определенного количества измерений уровней помех. Статистическая обработка результатов различных измерений уровня помех проведена на ЭВМ, учитывая реальную нестационарность процесса радиопомех. Оказалось, что достаточно вычислить средний уровень помехи по результатам измерений примерно за 10-20 мин (в зависимости от частоты отсчетов, времени суток и т.д.) до момента выбора оптимальной по помехам частоты.

Математический аппарат. Работа радиолинии на экстремальных частотах ионосферной волной со слишком малыми мощностями передатчика возможна благодаря техническим
<table>
<thead>
<tr>
<th>Фамилия</th>
<th>Использованные Книги</th>
</tr>
</thead>
<tbody>
<tr>
<td>ПОЛУХИНА О.Е.</td>
<td>197</td>
</tr>
<tr>
<td>ПОНОМАРЕВ В.И.</td>
<td>114</td>
</tr>
<tr>
<td>ПОПОВ Е.А.</td>
<td>76,77</td>
</tr>
<tr>
<td>ПОТЕЖИН В.А.</td>
<td>242</td>
</tr>
<tr>
<td>ПРИБЫТКОВ Д.Н.</td>
<td>118</td>
</tr>
<tr>
<td>ПРИЛУЧЕНКО М.Х.</td>
<td>295,296,297</td>
</tr>
<tr>
<td>ПРОКОПЧУК Е.П.</td>
<td>179,180</td>
</tr>
<tr>
<td>ПРОКОФЬЕВ А.А.</td>
<td>13</td>
</tr>
<tr>
<td>ПРОЛЕТАРСКИЙ А.В.</td>
<td>281</td>
</tr>
<tr>
<td>ПРОХОРОВА Е.С.</td>
<td>257</td>
</tr>
<tr>
<td>ПУСТЕЛЕНИНА Е.В.</td>
<td>86</td>
</tr>
<tr>
<td>ПУХИР Г.А.</td>
<td>96</td>
</tr>
<tr>
<td>ПЯТАЕВ В.И.</td>
<td>50</td>
</tr>
<tr>
<td>РАДИОНОВ А.А.</td>
<td>73,74</td>
</tr>
<tr>
<td>РАВЕСКИЙ А.С.</td>
<td>71,72</td>
</tr>
<tr>
<td>РАВЕСКИЙ С.Б.</td>
<td>71</td>
</tr>
<tr>
<td>РАЙКИН И.Л.</td>
<td>225,230</td>
</tr>
<tr>
<td>РАЙКИН Л.И.</td>
<td>227</td>
</tr>
<tr>
<td>РАЙКИНА А.В.</td>
<td>243,244</td>
</tr>
<tr>
<td>РАССАДИН А.Э.</td>
<td>18</td>
</tr>
<tr>
<td>РЕДКИЙ А.К.</td>
<td>72</td>
</tr>
<tr>
<td>РЕДЫКИН Ю.В.</td>
<td>101,103</td>
</tr>
<tr>
<td>РЕЗНИКОВ М.Б.</td>
<td>304</td>
</tr>
<tr>
<td>РОМАНОВ Д.Н.</td>
<td>24,25,26</td>
</tr>
<tr>
<td>РОМАШОВ В.В.</td>
<td>33</td>
</tr>
<tr>
<td>РОМАШОВ П.С.</td>
<td>80</td>
</tr>
<tr>
<td>РОСТОКИН И.Н.</td>
<td>53,54</td>
</tr>
<tr>
<td>РУДАКОВ А.С.</td>
<td>289</td>
</tr>
<tr>
<td>РУБЕЦКИЙ Г.Ю.</td>
<td>89</td>
</tr>
<tr>
<td>РУСИНОВА В.Ю.</td>
<td>270</td>
</tr>
<tr>
<td>РУЧКИНА Ю.Д.</td>
<td>164</td>
</tr>
<tr>
<td>РЫБИН И.Б.</td>
<td>286</td>
</tr>
<tr>
<td>РЫЖАКОВА Т.С.</td>
<td>70</td>
</tr>
<tr>
<td>САДКОВ В.Д.</td>
<td>207</td>
</tr>
<tr>
<td>САДКОВА О.В.</td>
<td>213</td>
</tr>
<tr>
<td>САЖИН В.А.</td>
<td>174</td>
</tr>
<tr>
<td>САЖИН С.Г.</td>
<td>168,169,170,171</td>
</tr>
<tr>
<td>САЛАДАЕВ Е.Н.</td>
<td>121,123</td>
</tr>
<tr>
<td>САМОЙЛОВ А.Н.</td>
<td>34</td>
</tr>
<tr>
<td>САМИН А.Г.</td>
<td>155,157</td>
</tr>
<tr>
<td>САМИНА О.А.</td>
<td>155,157</td>
</tr>
<tr>
<td>САФРОНОВ Е.М.</td>
<td>317</td>
</tr>
<tr>
<td>СВЕТЛЯКОВ Ю.А.</td>
<td>62,63,75</td>
</tr>
<tr>
<td>СЕДЫХ И.О.</td>
<td>311</td>
</tr>
<tr>
<td>СЕМАШКО А.В.</td>
<td>128,129,145</td>
</tr>
<tr>
<td>СЕМЕНОВ А.В.</td>
<td>276,277</td>
</tr>
<tr>
<td>СЕМЕНОВА О.В.</td>
<td>164</td>
</tr>
<tr>
<td>СЕМЕНОВА М.Ю.</td>
<td>41</td>
</tr>
<tr>
<td>СЕРОГЛАЗОВ В.В.</td>
<td>224</td>
</tr>
<tr>
<td>СЕЧКО Г.В.</td>
<td>7,96</td>
</tr>
<tr>
<td>СИДОРУК Р.М.</td>
<td>230</td>
</tr>
<tr>
<td>СИЛАЕВ А.Н.</td>
<td>311</td>
</tr>
<tr>
<td>СИТУ АУНГ СО</td>
<td>89</td>
</tr>
<tr>
<td>СКОБЕЛЕВ В.В.</td>
<td>279</td>
</tr>
<tr>
<td>СКОБЕЛЕВ В.Г.</td>
<td>279</td>
</tr>
<tr>
<td>СЛЮСАРЬ В.И.</td>
<td>6,52,90,92</td>
</tr>
<tr>
<td>СЛЮСАРЬ Д.В.</td>
<td>52</td>
</tr>
<tr>
<td>СМИРНОВ И.В.</td>
<td>179,180</td>
</tr>
<tr>
<td>СМИРНОВА А.С.</td>
<td>184</td>
</tr>
<tr>
<td>СМИРНОВА Д.М.</td>
<td>15</td>
</tr>
<tr>
<td>СОКОЛОВ А.Д.</td>
<td>191</td>
</tr>
<tr>
<td>СОКОЛОВ М.Е.</td>
<td>219</td>
</tr>
<tr>
<td>СОКОЛОВА З.С.</td>
<td>263,268,269</td>
</tr>
<tr>
<td>СОЛДАТОВ А.А.</td>
<td>36,37</td>
</tr>
<tr>
<td>СОЛУНИН Л.А.</td>
<td>74</td>
</tr>
<tr>
<td>СОРОКИНА А.В.</td>
<td>58,80</td>
</tr>
<tr>
<td>СТАРОСТИН Н.В.</td>
<td>310,311,312</td>
</tr>
<tr>
<td>СТЕПАНЕНКО М.А.</td>
<td>263</td>
</tr>
<tr>
<td>СУББОТИН В.Г.</td>
<td>200</td>
</tr>
<tr>
<td>СУСЛОВ Б.А.</td>
<td>135</td>
</tr>
<tr>
<td>СУХОВ А.П.</td>
<td>146</td>
</tr>
<tr>
<td>СУЧКОВА М.Р.</td>
<td>228</td>
</tr>
<tr>
<td>СЫСОЕВ Д.А.</td>
<td>22</td>
</tr>
<tr>
<td>СЬЯНОВ В.А.</td>
<td>50</td>
</tr>
<tr>
<td>ТАБАКАНОВ Н.Л.</td>
<td>165</td>
</tr>
<tr>
<td>ТЕЛЬНЫХ А.А.</td>
<td>219</td>
</tr>
<tr>
<td>ТЕРЕХОВА Н.Ю.</td>
<td>187</td>
</tr>
<tr>
<td>ТИМОФЕЕВ Ю.В.</td>
<td>67</td>
</tr>
<tr>
<td>ТИМОФЕЕВА О.П.</td>
<td>270</td>
</tr>
<tr>
<td>ТИТОВА Е.И.</td>
<td>268</td>
</tr>
<tr>
<td>ТИХОМИРОВА М.А.</td>
<td>249</td>
</tr>
<tr>
<td>ТОКАРЕВ С.В.</td>
<td>179</td>
</tr>
<tr>
<td>ТРАВКИН Д.Н.</td>
<td>194,196</td>
</tr>
<tr>
<td>ТРОЦКО А.А.</td>
<td>92</td>
</tr>
<tr>
<td>ТУЛЯКОВ Ю.М.</td>
<td>108,109</td>
</tr>
<tr>
<td>ТУН АУНГ</td>
<td>87</td>
</tr>
<tr>
<td>ТЭТ АУНГ</td>
<td>89</td>
</tr>
<tr>
<td>ТЮГИН Д.Ю.</td>
<td>208</td>
</tr>
<tr>
<td>УЛЬЯНОВ М.В.</td>
<td>288</td>
</tr>
<tr>
<td>УСКОВ О.В.</td>
<td>71</td>
</tr>
<tr>
<td>УСПЕНСКАЯ Г.И.</td>
<td>48</td>
</tr>
<tr>
<td>УСТОЯХАНИН К.В.</td>
<td>111</td>
</tr>
<tr>
<td>УТКИН В.Н.</td>
<td>207</td>
</tr>
<tr>
<td>ФАДЕЕВ И.Д.</td>
<td>80</td>
</tr>
<tr>
<td>ФАМ СУАН ФАНГ</td>
<td>186</td>
</tr>
<tr>
<td>ФАМ ТХИ ХЮН</td>
<td>278</td>
</tr>
<tr>
<td>ФЕДЕНКО Д.А.</td>
<td>99</td>
</tr>
<tr>
<td>ФЕДОРОВА Е.А.</td>
<td>165</td>
</tr>
<tr>
<td>ФЕДОСЕЕВА Е.В.</td>
<td>28,55</td>
</tr>
<tr>
<td>ФЕДОСЕНКО Ю.С.</td>
<td>300,302</td>
</tr>
<tr>
<td>ФЕДОТОВ А.Б.</td>
<td>85</td>
</tr>
<tr>
<td>ФЕДУЛОВ А.В.</td>
<td>106</td>
</tr>
<tr>
<td>ФЕТЯСОВ Е.С.</td>
<td>112</td>
</tr>
<tr>
<td>ФЕТЯСОВА Е.С.</td>
<td>112</td>
</tr>
<tr>
<td>ФИДЕЛИН Г.А.</td>
<td>116,117</td>
</tr>
<tr>
<td>ФИЛИНСКИХ А.Д.</td>
<td>227,232</td>
</tr>
<tr>
<td>ФИШЕВ М.А.</td>
<td>114</td>
</tr>
<tr>
<td>ФОМИЧЕВ А.В.</td>
<td>283</td>
</tr>
<tr>
<td>ФУНТОВ В.А.</td>
<td>273</td>
</tr>
<tr>
<td>ГАРЧУК С.М.</td>
<td>25</td>
</tr>
<tr>
<td>ГВОСТОВА О.Е.</td>
<td>199</td>
</tr>
<tr>
<td>ГИСАМОВ Д.Ф.</td>
<td>98</td>
</tr>
<tr>
<td>ГИСАМОВ Ф.Г.</td>
<td>97</td>
</tr>
<tr>
<td>ГОЛОПОВ И.С.</td>
<td>8</td>
</tr>
<tr>
<td>ГРОМОВ К.К.</td>
<td>27</td>
</tr>
<tr>
<td>ГРЫВИЕН В.П.</td>
<td>204,205,206,324,325</td>
</tr>
<tr>
<td>ГРЫВИЕН В.П.</td>
<td>302</td>
</tr>
<tr>
<td>ГРИБИЗОВА Т.Ю.</td>
<td>186</td>
</tr>
<tr>
<td>ГУГАНОВ Б.В.</td>
<td>240</td>
</tr>
<tr>
<td>ГУГАНОВ Б.В.</td>
<td>315</td>
</tr>
<tr>
<td>ГУГАНОВ Б.В.</td>
<td>29</td>
</tr>
<tr>
<td>ГУГАНОВ Б.В.</td>
<td>198</td>
</tr>
<tr>
<td>ГУГАНОВ Б.В.</td>
<td>298</td>
</tr>
<tr>
<td>ГУГАНОВ Б.В.</td>
<td>77</td>
</tr>
</tbody>
</table>
ИНФОРМАЦИОННЫЕ СИСТЕМЫ И ТЕХНОЛОГИИ
ИСТ-2009
МАТЕРИАЛЫ
XV МЕЖДУНАРОДНОЙ НАУЧНО-ТЕХНИЧЕСКОЙ КОНФЕРЕНЦИИ

Редакторы Т.В.Третьякова, Е.В. Комарова
Компьютерная верстка В.П.Хранилов

Подписано в печать 09.04.2009. Формат 60 х 84 1/16. Бумага офсетная.
Печать офсетная. Усл. печ. л. 20,75. Уч.-изд. л. 41,0. Тираж 250 экз. Заказ 254.

Нижегородский государственный технический университет им. Р.Е. Алексеева.
Типография НГТУ. 603950, г. Нижний Новгород, ул. Минина, 24.