ACCURACY OF LINEAR DIGITAL ANTENNA ARRAY AT JOINT
ESTIMATION OF RANGE AND ANGULAR COORDINATE OF M SOURCES

V. I. Slyusar

Scientific Centre of problems of protection from the precision weapon at Kiev institute of Forces Ground
Kiev, Andruschenko street, 4

For the analysis of accuracy of linear digital antenna
array (DAA) it is offered to use the matrix record of
its response of a kind:

\[U = P \circ A, \]

where \(P = S \circ F, A = [a_1 \ a_2 \ \ldots \ a_M]^T \) – the
vector of complex signals amplitudes,

\[S = \begin{bmatrix}
 S_1(z_1) & S_1(z_2) & \ldots & S_1(z_M) \\
 S_2(z_1) & S_2(z_2) & \ldots & S_2(z_M) \\
 \vdots & \vdots & \ddots & \vdots \\
 S_T(z_1) & S_T(z_2) & \ldots & S_T(z_M)
\end{bmatrix}, \]

\(T \times M \) - matrix of the responses of \(T \) gates of range
on \(M \) of signals,

\[F = \begin{bmatrix}
 F_1(x_1) & F_1(x_2) & \ldots & F_1(x_M) \\
 F_2(x_1) & F_2(x_2) & \ldots & F_2(x_M) \\
 \vdots & \vdots & \ddots & \vdots \\
 F_R(x_1) & F_R(x_2) & \ldots & F_R(x_M)
\end{bmatrix}. \]

\(R \times M \)-matrix of meanings of the directivity
characteristics of \(R \) reception channels of DAA in
directions of \(M \) sources; \(\circ \) - symbol of transposed
face-splitting matrixes product (is entered by the
author [1]).

With the account of (1), on the basis of matrix
Neudecker’s derivative [2] an information Fisher’s
block-matrix, describing the accuracy of joint
estimation of range and angular coordinate, is
obtained:

\[I = \frac{1}{\sigma^2} \times \begin{bmatrix}
 p^T \cdot p & (A^* \otimes p^T) \cdot \frac{\partial P}{\partial Y} \\
 (\frac{\partial P}{\partial Y})^T \cdot (A \otimes p) & (\frac{\partial P}{\partial Y})^T \cdot (A^* \otimes 1_{RT}) \cdot \frac{\partial P}{\partial Y}
\end{bmatrix}, \]

where \(\frac{\partial P}{\partial Y} \) – Neudecker’s derivative of matrix \(P \) on
vector \(Y \), made of unknown estimations of range
and angular coordinates of \(M \) sources; \(1_{RT} \) – identity
matrix of dimension \(R \times T \); \(\otimes \) – symbol of
Kronecker- products of matrixes.

As in the considered case we are interested only in
dispersions of components of vector \(Y \), it is
necessary to form only the right bottom block of
matrix \(H = I^{-1} \). According to a procedure of the
block-matrix inversion, the necessary block of a
matrix \(H \) will be written down as:

\[H_{22} = \left[C \cdot B^* \cdot A^{-1} \cdot B \right]^{-1}, \]

where \(A = p^T \cdot p, B = (A^* \otimes p^T) \cdot \frac{\partial P}{\partial Y}, \)

\[C = \left(\frac{\partial P}{\partial Y} \right)^T \cdot (A^* \otimes 1_{RT}) \cdot \frac{\partial P}{\partial Y}. \]

It is essential, that for preservation of the
dependence of dispersion of estimations of ranges
and angular coordinates of \(M \) sources on differences
of initial phases of their signals, it is necessary in (2)
to use only the real part of matrix difference:

\[H_{22} = \left[\text{Re} \left(C \cdot B^* \cdot A^{-1} \cdot B \right) \right]^{-1}. \]

Unfortunately, the author has not known yet a strict
substantiation of such approach. However, its
neglect results in a situation, when obtained
dispersion of estimations of non-energetic
parameters of signals of \(M \) sources correspond to
only cophase or to anti-phase situations of signals
reception [3].

In case of a single source the problem of
investigation of estimation accuracy is much
simplified. Thus \(A = a_1, Y = [x_1 \ z_1]^T, \)

\[P = S \circ F = \begin{bmatrix}
 F_1(x_1) \\
 \vdots \\
 F_R(x_1)
\end{bmatrix}. \]
The analysis of resulted relations allows to make a conclusion about the possibility of increase of the accuracy of the solution of range and angle measurement at the expense of minimization of

\[
\left\{ \sum_{r=1}^{R} S_t(z_i) \cdot \frac{\partial R_t(x_i)}{\partial \alpha_1} \cdot \frac{\partial R_t(x_i)}{\alpha_1} \right\} - \left\{ \sum_{r=1}^{R} F_t(x_i) \cdot \frac{\partial F_t(x_i)}{\partial \alpha_1} \right\}
\]

for identical DAA channels or sum

\[
\left\{ \sum_{r=1}^{R} \sum_{t=1}^{T} S_t(z_i) \cdot \frac{\partial R_t(x_i)}{\partial \alpha_1} \cdot \frac{\partial R_t(x_i)}{\partial \alpha_1} \cdot \frac{\partial R_t(x_i)}{\partial \alpha_1} \cdot \frac{\partial R_t(x_i)}{\partial \alpha_1} \right\} - \left\{ \sum_{r=1}^{R} F_t(x_i) \cdot \frac{\partial F_t(x_i)}{\partial \alpha_1} \cdot \frac{\partial F_t(x_i)}{\partial \alpha_1} \right\}
\]

in more general case, when in each t – gate its own set of directivity characteristics of channels is formed and the description of the responses of gates in channels are non-identical.

REFERENCES

1. Slyusar V. I. Analytical model of the digital antenna array on a basis of face-splitting matrix product. - this volume.
