ИССЛЕДОВАНИЕ БАЛЛИСТИЧЕСКИХ ПАРАМЕТРОВ

УДК 621.39

СПОСОБ ИЗМЕРЕНИЯ СКОРОСТИ ПОДЛЕТА ПРОТИВОТАНКОВЫХ СНАРЯДОВ

А. А. Головин, В. И. Слюсар
О. П. Коростелев

Предложены цифровые методы недоплеровского измерения скорости подлета противотанковых снарядов. Проведена оценка их эффективности.

Запропоновано цифровые методы недоплеровского вимірювання швидкості підйому протитанкових снарядів. Здійснено оцінку їхньої ефективності.

Digital methods of the non-Doppler measurement of the flying-up velocity of the anti-tank projectiles are proposed. Their efficiency is evaluated.

Для повышения живучести бронетанкового вооружения широко используют системы поражения на подлете. Среди них наиболее распространен получили комплексы активной защиты с радиолокационными средствами обнаружения. Для повышения эффективности их функционирования необходима точная информация о скорости подлета противотанковых снарядов (ПТС). Получение этой информации, как правило, осуществляется с помощью доплеровских РЛС [1].

Поскольку уничтожение ПТС производится на небольшой дальности, то в качестве зондирующих сигналов целесообразно использовать импульсы миллиметрового диапазона длин волн. Учитывая высокие поетные скорости ПТС (скорость кинетических ПТС составляет 1300...1800, кумулятивных — до 900, осколочно-фугасных 700...1200 м/с), оценка скорости по доплеровской частоте не всегда эффективна. Так, при радиальной скорости снаряда \(v_p = 1200 \text{ м/с} \) на длинах волн 3 и 8 мм частоты Доплера отраженного сигнала соответственно равны \(F_D = 800 \text{ и } 300 \text{ кГц} \). Такая большая доплеровская составляющая сигнала приводит к существенной неоднозначности измерения скорости. Кроме того, применение методов спектрального анализа, в частности, быстрого преобразования Фурье (БПФ), также сопряжено с определенными трудностями. Дело в том, что малые эффективные поверхности рассеяния ПТС на подлете вынуждают использовать в РЛС либо большие уровни излучаемой мощности, что не всегда возможно, либо длительное накопление отраженных сигналов в секторе обзора. В последнем случае наблюдается «рассыпание» откликов цифровых фильтров доплеровской селекции целей. В подтверждение на рис. 1, 2 представлены результаты БПФ по 4096 отсчетам. При этом предполагалось, что ПТС движется в горизонтальной плоскости, прямолинейно и с постоянной скоростью. Как видно из рис. 1, \(a \) при \(v_p = 800 \text{ м/с} \) и

Ф.А. ГОЛОВИН, В.И. СЛЮСАР, О.П. КОРОСТЕЛЕВ, 2003

Артиллерийское и стрелковое вооружение
времени накопления $t_n = 10$ мс БПФ можно использовать для измерения скорости подлета ПТС, однако при этом необходимо учитывать смещение оценок частоты.

При увеличении времени накопления до 20 мс происходит расширение и уменьшение по амплитуде спектра движущегося источника, вследствие чего ухудшается точность измерения скорости ПТС. Аналогичная картина наблюдается при скорости $v_p = 1400$ м/с и $t_n = 10$ мс (рис. 2, a). При той же скорости и $t_n = 20$ мс (рис. 2, b) спектр ПТС становится слишком "размытым" по оси частот, и его анализ на фоне собственных шумов приемного устройства становится проблематичным. Что касается объектов, движущихся с гиперзвуковыми скоростями, то их селекция с помощью рассмотренного метода вообще невозможна [1].

Одним из подходов к решению данных проблем является использование недоплеровских методов измерения скорости. Рассмотрим один из таких методов, суть которого сводится к оцениванию периода повторения перекрывающихся во времени импульсных эхо-сигналов, полученных по серии зондирований.

При исследовании задаем постоянную скорость ПТС и линейную модель его движения в пределах интервала наблюдения. Предположим, что вектор скорости снаряда лежит на линии РЛС–ПТС.

Все дальнейшие выкладки ориентированы на обработку нескольких импульсных сигналов или их пачек. При этом предполагается, что указанные импульсы имеют одинаковую, описываемую аналитической функцией, известную форму огибающей, и на интервале приема сигнальной пачки период их повторения d остается неизменным. Полагаем также, что уровень сигнала позволяет пренебречь наличием шумов, а приемный тракт вносит пренебрежимо малые нелинейные искажения.
С учетом сделанных допущений последовательность зондирующих импульсов, используемая для измерения скорости, будет представлена собой пачку из N радиоимпульсов с периодом повторения T.

Собственно измерительную выборку формируем путем многократного суммирования одноименных отсчетов сигналов, полученных в разные периоды излучения, аналогично процедуре, рассмотренной в [2]. Соответствующий вариант сигнальной смеси, подлежащей обработке, представлен на рис. 3.

По измеренному значению d скорость полета ПТС определяется из формулы

$$ t = \frac{d\Delta t_c}{2T}, $$

где T — период повторения зондирующих импульсов; c — скорость света; Δt — период дискретизации аналогово-цифрового преобразователя (АЦП).

В рамках предлагаемого подхода для определения оценки d используем метод наименьших квадратов. Сумма квадратов невязок уравнений системы для квадратурных составляющих нормированной комплексной огибающей импульса $k(s - z - nd)$ имеет вид

$$ F = \sum_{s=0}^{S-1} \sum_{n=0}^{N-1} \left| U_{sn}^c - a^c k^c(s - z - nd) \right|^2 + \sum_{s=0}^{S-1} \sum_{n=0}^{N-1} \left| U_{sn}^r - a^r k^r(s - z - nd) \right|^2 \rightarrow \min, $$

где $k^c(s - z - nd) = \begin{cases} k^c(s - z - nd) & \text{при } nd \leq s - z < M + nd, \\ 0 & \text{при } nd > s - z \geq M + nd \end{cases}$ — квадратурные составляющие нормированной к своему максимуму дискретной функции огибающей n-го импульса в s-м отсчете измерительной выборки; U_{sn}^c — квадратурные составляющие напряжения n-го импульса в s-м отсчете АЦП, сформированные, например, путем дискретного преобразования Гильберта над выборкой отсчетов; $a^c(s)$ — оценки квадратурных составляющих амплитуд сигналов в s-м отсчете АЦП; S — длительность импульсов в периодах дискретизации АЦП; N — число импульсов в выборке; M — длительность импульса в отсчетах АЦП.

Минимум F обеспечивается при вполне определенных оценках $\tilde{a}^c(s)$. Найдем их путем дифференирования (2) по указаным неизвестным, а затем приравняем нулю соответствующие частные производные. Проделав это, получим

$$ \begin{align*}
\tilde{a}^c &= \frac{\sum_{s=0}^{S-1} \sum_{n=0}^{N-1} U_{sn}^c k^c(s - z - nd)}{\sum_{s=0}^{S-1} \sum_{n=0}^{N-1} \left| k^c(s - z - nd) \right|^2}, \\
\tilde{a}^r &= \frac{\sum_{s=0}^{S-1} \sum_{n=0}^{N-1} U_{sn}^r k^r(s - z - nd)}{\sum_{s=0}^{S-1} \sum_{n=0}^{N-1} \left| k^r(s - z - nd) \right|^2}.
\end{align*} $$

Для нахождения оценок z и d перейдем к модифицированной функции правдоподобия согласно [3]. Для этого слагаемые, входящие в (2), возведем в квадрат.
Исследование б. статистических параметров

\[
F = \sum_{s=0}^{S-1} \sum_{n=0}^{N-1} (U^c_{sn})^2 - 2a^c \sum_{s=0}^{S-1} \sum_{n=0}^{N-1} U^c_{sn} k^c(s - \tilde{z} - n\tilde{d}) + \frac{S-1}{2} \sum_{s=0}^{S-1} \sum_{n=0}^{N-1} (U^c_{sn})^2 - 2a^c \sum_{s=0}^{S-1} \sum_{n=0}^{N-1} U^c_{sn} k^c(s - \tilde{z} - n\tilde{d}) + \frac{S-1}{2} \sum_{s=0}^{S-1} \sum_{n=0}^{N-1} (U^c_{sn})^2 \rightarrow \min. \tag{4}
\]

Минимизация \(F \) обеспечивается при максимальном значении слагаемых со знаком минус в выражении (4). С учетом полученных оценок амплитудных составляющих (3) модифицированная функция правдоподобия имеет вид

\[
F_M = \left[\sum_{s=0}^{S-1} \sum_{n=0}^{N-1} U^c_{sn} k^c(s - \tilde{z} - n\tilde{d}) \right]^2 + \left[\sum_{s=0}^{S-1} \sum_{n=0}^{N-1} U^a_{sn} k^a(s - \tilde{z} - n\tilde{d}) \right]^2 = \max. \tag{5}
\]

Неизвестные \(\tilde{z} \) и \(\tilde{d} \) находятся из (5) путем перебора с заданным шагом их возможных значений до достижения функции \(F_M \) максимума максимумом.

Для нахождения оценки \(\tilde{d} \) периодического сдвига радиоимпульсов также можно использовать нескольких иной подход, заключающийся в предварительной трансформации огибающих измерительной выборки за счет суммирования отсчетов. В данном случае функция невязок имеет вид

\[
F = \sum_{s=0}^{S-1} \left[U^c_{sc} - a^c \sum_{n=0}^{N-1} k^c(s - \tilde{z} - n\tilde{d}) \right]^2 + \left[U^a_{sc} - a^a \sum_{n=0}^{N-1} k^a(s - \tilde{z} - n\tilde{d}) \right]^2 \rightarrow \min, \tag{6}
\]

где \(U^{c,a}_{sc} \) — квадратные составляющие суммарного напряжения импульсов, присутствующих в с-м отсчете АЦП.

Алгоритм нахождения оценки \(\tilde{d} \) аналогичен рассмотренному выше. При этом квадратурные составляющие амплитуд сигналов вычисляются по формулам

\[
\tilde{a}^c = \left[\frac{1}{S-1} \sum_{s=0}^{S-1} \sum_{n=0}^{N-1} k^c(s - \tilde{z} - n\tilde{d}) \right]^{2/2}, \quad \tilde{a} = \left[\frac{1}{S-1} \sum_{s=0}^{S-1} \sum_{n=0}^{N-1} k^a(s - \tilde{z} - n\tilde{d}) \right]^{2/2} \tag{7}
\]

Преобразованный функционал невязок (6) по аналогии с (4) сведется к виду

\[
F = \sum_{s=0}^{S-1} \left[(U^c_{sc})^2 - 2a^c U^c_{sc} \sum_{n=0}^{N-1} k^c(s - \tilde{z} - n\tilde{d}) + \left(\sum_{n=0}^{N-1} k^c(s - \tilde{z} - n\tilde{d}) \right)^2 \right] + \sum_{s=0}^{S-1} \left[(U^a_{sc})^2 - 2a^a U^a_{sc} \sum_{n=0}^{N-1} k^a(s - \tilde{z} - n\tilde{d}) + \left(\sum_{n=0}^{N-1} k^a(s - \tilde{z} - n\tilde{d}) \right)^2 \right] \rightarrow \min. \tag{8}
\]

Искомая оценка \(\tilde{d} \) по-прежнему вычисляется путем перебора ее возможных значений до достижения максимума максимумом модифицированной функции правдоподобия. Эта функция находится из (8) путем ее максимизации и имеет следующий вид:
В результате математического моделирования в пакете MathCAD были проведены расчеты среднеквадратического отклонения (СКО) величины \hat{d} для измерения скорости по выше рассмотренным алгоритмам. На рис. 4 приведены зависимости СКО оценки \hat{d} в долях периода дискретизации АШП σ_d от количества импульсов в пачке N без учета накопления шумов для обоих алгоритмов. Моделирование проводили для импульсов длительностью 40 отсчетов АШП при единичном отношении сигнал-шум и следующих значениях параметров: $\hat{d} = 0.1$ (соответствует $v_p = 1500$ м/с при зоне однозначного измерения дальности не более 15 км); $z = 0.1$; $S = 400$.

Зависимости, приведенные на рис. 4, свидетельствуют о том, что более точным, как и следовало ожидать, является метод измерения скорости с трансформацией огибающей (9). Максимальная точность последнего достигается тогда, когда начало последнего импульса пачки лежит в районе вершины первого сигнала. При скорости полета цели $v_p = 1500$ м/с и заданных выше параметрах СКО ее оценки $\sigma_d = 5 \cdot 10^{-4}$ соответствуют погрешности измерения $\Delta v = 7.5$ м/с, что ниже чем в существующих доплеровских РЛС.

Таким образом, применение рассмотренных выше методов измерения скорости ПТС в комплексах активной защиты сможет существенно повысить эффективность их функционирования. Кроме того, предложенные методы обработки могут найти применение в комплексах баллистических измерений.